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Motivation

• Computer models used to analyze climate policy 
scenarios typically treat technological change as an 
exogenous factor, or ignore it altogether

• Assumptions about technology cost and performance 
can have a strong influence on model results 

• This study examines the importance of technological 
“learning” on the role of carbon capture and storage 
(CCS) systems as a mitigation strategy, under 
alternative climate-related policy scenarios



Approach

• Use historical studies to estimate rates of 
technological innovation for environmental 
technologies 

• Incorporate these findings in a large-scale   
climate policy model to represent future cost 
trends for CCS systems 

• Assess the policy implications of including 
technological “learning” for carbon 
sequestration technologies



Technological Innovation

• Future characteristics of a technology 
(e.g., costs) are not “autonomous;”     
they depend on intervening actions

• Improvements in technology are realized 
through investments in R&D, production, 
and deployment (resulting in learning-by-
doing, and learning-by-using)

• For power generation technologies, 
cumulative installed capacity is the 
common proxy for accumulated knowledge



Learning Curves for Electricity 
Generation Technologies
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Learning Curve Formulation 

where,
yi = cost to produce i th unit
xi = cumulative production thru period i
b = learning rate exponent
a = coefficient (constant)

General equation:

Percent cost reduction for a doubling of cumulative output is 
called the “learning rate” = (1 – 2 –b)

yi = axi 
–b
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Normalized Learning Curve 
for SCR Capital Cost
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The IIASA Modeling Framework
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Reference Energy System

END-USE 
TECHNOLOGIES 

•Transportation

•Industrial 
Thermal

•Industrial Specific

•Res./Comm. 
Thermal

•Res./Comm. 
Specific

•Feedstocks

RESOURCE 
EXTRACTION 

•Oil

•Gas

•Coal

•Renewables

•Uranium

CONVERSION 
TECHNOLOGIES 

•Electricity     
Generation

•Fuels Production 
(Oil products,    
Alcohols, 
Hydrogen, etc)

T&D

Primary
Energy 
Carriers

Final
Energy 
Carriers

Approximately 400 technologies available



Carbon Capture Technologies 
in MESSAGE

• Electricity Sector
– Natural gas (NGCC, GT)

– Coal (PC, PFBC, etc.)

– Coal IGCC

• Synthetic fuels production
– Fossil-based methanol  

– Fossil-based hydrogen

Chemical
separation
processes

Physical 
separation 
processes



Endogenous Learning Curves
for CCS Clusters
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Climate Policy Scenarios

• Model the IPCC-SRES “A2” baseline scenario
– with and without carbon constraints
– with and without endogenous “learning” for CCS 

(assuming a 12% learning rate)

• Model two hypothetical policy scenarios:*
– 550 ppmv CO2 by 2100 (global optimization)
– CCS required for power generation sector only 

(according to a scheduled phase-in)

*Scenario results are not directly comparable because of some differences in assumptions



The A2 Baseline Scenario

783354Atmos. CO2 Conc. (ppmv)

17616.2Cumulative CO2 (GtC)

1983352World Primary Energy (EJ)
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15.15.3World Population (billion)

21001990Scenario Parameter



World Energy Use: Scenario A2
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Energy-Related CO2 Emissions



Results for the
550 ppm stabilization

scenario
(global optimization)
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Market Penetration of CCS
(no learning case)



Cumulative Carbon Sequestration
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Average Carbon Tax (1990 US$/t)
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Results for the
Technology-Based
Policy Scenario 



Technology-Based Policy Scenario

• An illustrative “technology forcing” policy is 
imposed on fossil-fueled power plants (only)

• A minimum time-increasing share of the total 
fossil-fuel capacity is required to capture and 
store 90% of potential CO2 emissions 

• Different schedules for industrialized and 
developing countries

• Cases are examined with and without 
endogenized learning for CCS technologies



Minimum Deployment of CCS 
for Fossil-Fuel Power Plants

0%

20%

40%

60%

80%

100%

2010 2020 2030 2040 2050 2060 2070

Sh
ar

e 
of

 p
la

nt
s 

w
ith

 C
C

S 
(%

) Industrialized Regions
Developing Regions

t=26 years

t=19 years



Captured CO2 in Electricity Sector 
A2-CCT Scenario (no learning)
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CO2 Mitigation in 2050
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CO2 Mitigation in 2100  
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Electricity Prices
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Average Cost of Carbon Abatement 
(1990 US$/t)
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Global Energy-Related 
CO2 Emissions
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Conclusions
• Consideration of technological learning can 

have a significant influence on the expected 
role of CCS technologies, and the cost of 
alternative climate mitigation policies 

• The magnitude and timing of impacts 
depends strongly on the policy scenario, and 
the reference case assumptions

• More work is needed to better understand 
and model the key factors that influence    
technology innovation, especially for 
environmental technologies like carbon 
capture and storage
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